Implementation of polynomial arithmetic using linked list in python with code

Comments

  1. class _Node:
    __slots__ = '_element', '_left', '_right'

    def __init__(self, element, left=None, right=None):
    self._element = element
    self._left = left
    self._right = right

    class BinaryTree:
    def __init__(self):
    self._root = None

    def maketree(self, e, left, right):
    self._root = _Node(e,left._root,right._root)

    def inorder(self,troot):
    if troot:
    self.inorder(troot._left)
    print(troot._element,end=' ')
    self.inorder(troot._right)

    def preorder(self,troot):
    if troot:
    print(troot._element,end=' ')
    self.preorder(troot._left)
    self.preorder(troot._right)

    def postorder(self,troot):
    if troot:
    self.postorder(troot._left)
    self.postorder(troot._right)
    print(troot._element, end=' ')


    x = BinaryTree()
    y = BinaryTree()
    z = BinaryTree()
    r = BinaryTree()
    s = BinaryTree()
    t = BinaryTree()
    a = BinaryTree()
    x.maketree(40,a,a)
    y.maketree(60,a,a)
    z.maketree(20,x,a)
    r.maketree(50,a,y)
    s.maketree(30,r,a)
    t.maketree(10,z,s)
    print('Inorder Traversal')
    t.inorder(t._root)
    print()
    print('Preorder Traversal')
    t.preorder(t._root)
    print()
    print('Postorder Traversal')
    t.postorder(t._root)

    ReplyDelete
  2. output
    Inorder Traversal
    40 20 10 50 60 30
    Preorder Traversal
    10 20 40 30 50 60
    Postorder Traversal
    40 20 60 50 30 10

    ReplyDelete
  3. Binary search tree
    class _Node:
    __slots__ = '_element', '_left', '_right'

    def __init__(self, element, left=None, right=None):
    self._element = element
    self._left = left
    self._right = right

    class BinarySearchTree:
    def __init__(self):
    self._root = None

    def insert(self,troot,e):
    temp = None
    while troot:
    temp = troot
    if e == troot._element:
    return
    elif e < troot._element:
    troot = troot._left
    elif e > troot._element:
    troot = troot._right
    n = _Node(e)
    if self._root:
    if e < temp._element:
    temp._left = n
    else:
    temp._right = n
    else:
    self._root = n

    def inorder(self,troot):
    if troot:
    self.inorder(troot._left)
    print(troot._element,end=' ')
    self.inorder(troot._right)

    B = BinarySearchTree()
    B.insert(B._root,50)
    B.insert(B._root,30)
    B.insert(B._root,80)
    B.insert(B._root,10)
    B.insert(B._root,40)
    B.insert(B._root,60)
    B.insert(B._root,90)
    B.inorder(B._root)

    output
    10 30 40 50 60 80 90

    ReplyDelete

Post a Comment